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MPM Overview

e Force equilibrium:

div(c) +b - pit =0 in Q

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

MPM Overview

* Weak form:

fQ (c:Vn+tb-n-pun)dV=0
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MPM Overview

fQ (c:Vnptb-n-pun)dV=0
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MPM Overview
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MPM Overview

n(x) = 25 Nyx) 1,

u(x) = 2, Nyx) U,

Myl {A}} ={F}
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MPM Overview

7 (x) = 25 Nyx) 1,

u(x) = ZJ Ny(x) U,
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MPM Overview
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L feleiele, ()= 2y Ny

u(x) = 25 Ny(x) Uy

n()=5u (=2, Nx 6

Myl {A)} ={F3}

Arzs.n =0

How can a bounding surface be included?
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MPM Overview

****** pome e [T @ av
o fe0e e 7 ()= 2y Nyx)

u(x) = ZJ N,(x) Uy

1 (X) =3 u ()= 25 Ny(x) 3 U,

Myl {A}} = {F}

Arzz.n =0
* The current MPM algorithm allows for:
* Horizontal bounding surfaces
¢ Vertical bounding surfaces

¢ Or combination thereof — Results in a “stepped” boundary

@ Carter Mast - University nl'\’\'ashington - 5th MPM Workshop 4/2/2009
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MPM Overview

* Disadvantages of the current surface representation:
* Bounding surfaces are dependent on the computational
grid
® Horizontal & Vertical boundaries are often unrealistic for
the general essential boundary condition

The solution:

Introduce a grid independent bounding surface

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

Grid Independent Surface

* Representation of a GENERAL surface—one that is
independent of the background nodes—in the Material
Point Method.
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MPM Overview

* Advantages of a grid independent bounding surface:
¢ General surfaces shapes can be represented

e Allows for improved accuracy in determining the load
distribution

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

I ™
Incorporating the General Surface

* Develop a 1-D model

- m----- %I 7777777 {]----e-e--e-e{Je-e-¢--

General Approach in 2-D or 3-D 1-D Representation
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Incorporating the General Surface

* Approaches for incorporating the general surface:
® “Ad-hoc” approaches:
Develop initial understanding/behavior of the problem
Use existing formulation

Find an “easy” solution to the problem

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

I ™
Incorporating the General Surface

* Approaches for incorporating the general surface:

® Variational approach:
Relies on the development of an enhanced weak form of the
governing equation(s).
Use of the Lagrange multiplier method in which the
bounding surface traction becomes the Lagrange multiplier

@ Carter Mast - University nl'\’\'ashington - 5th MPM Workshop 4/2/2009
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Incorporating the General Surface

e Define necessary terms:

® The idea of a boundary length or boundary zone

Traditional MPM:
Viar
«——
————————————— {]----9--9--0-9 |0 -9o--0--

Bar begins interaction with boundary when leading particle enters
“boundary” cell:

Viar

%
e - @— - 90— 0 — @ — @ |0 - - ——— - -

k—Y—)

Boundary length, h
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Incorporating the General Surface

¢ Define necessary terms:

® The idea of a boundary length or boundary zone
Traditional MPM:
* Boundary length, h, is equal to the cell length

For the general surface MPM:

* No relationship between boundary length and cell length
(bounding surface is independent of the computational grid).

VBar
<

0----- q—*—of—o——o—@o—fo—fo——

e

Boundary length, h
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s A
Variational Approach

[o@:votb-n -pun)ydv- [t -ndl- [((G+u)-7dl =0
n(x)= 2y Nyx) 0y *+ mp

u) = XN U, + U

) =5u()=T,NK U, + dup

where:

7 (X)= Zg N5 (X) 15
up (x) = 25 Ny (x) Ug

u=0
N Sup (x)= X, N,x) 6 U,
ur+u=0
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Variational Approach

fg (c:Vvntb-n -pﬁ-n)dV—frtr-ndF—fr(u+ur)-TdF =0

0 1 {Nyr}" {-f} {ar}
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s A
Variational Approach

[o@:votb-n -pun)dV-[.t, - ndl- [((u+uy)-7dl =0

0 1 {N;r}? {-£} {ar}
1 Mrr]  [Mpy)T {Ar} = {{Fp}
{Nek My My {As} {F;}

* The above system is only valid when particles(s) are in
the boundary zone.
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a ™
Variational Approach

fg (c:Vvntb-n -pﬁ-n)dV—frtr-ndF—fr(u+ur)-TdF =0

.
i My] | 1{AJ}I I{ FJ}J

¢ Ifall particles are outside of the boundary zone,
traditional MPM is recovered.
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Demonstrative Problem

e Uniaxial Bar with Rigid impact
* Dynamic in Nature
* Impact Problem

e Known closed form solution

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

Demonstrative Problem

e Uniaxial Bar with Rigid impact
z
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Demonstrative Problem
¢ Uniaxial Bar with Rigid impact
‘ : |:| Region in motion - Region at rest
E (Unstressed) (Stressed)
i I Y
/
4 I
Demonstrative Problem
¢ Visualization of stress
. |:| Region in motion . Region at rest
(Unstressed) 4, — EA(S(Ipessed)
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* Bar Properties

Demonstrative Problem

Value

Bar Length Liar

Property Variable
Young's Modulus Ey. = F
Mass Density Phar =

Cross-sectional Area Ay, = A

29 (10)° psi
7.35(10)~* Ibf/in3
1.00 in?
50.00 in

@ Carter Mast - University of Washington - 5th MPM Workshop

e Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009
S
/
Demonstrative Problem
* Bar Properties
Property Variable Value
Initial Velocity Uzg —307.42 in/s
Wave Speed C 1.98 (10)° in/s
Time of Contact Alp 5.03(10)~* s
Resulting Stress o —58, 000 ps1
Reaction Force Ir 58,000 1b
4/2/2009

Carter Mast - University of Washington -
5th MPM Workshop

4/2/2009

14



4/2/2009

Demonstrative Problem

* MPM Setup

e 8 particles per cell

¢ Cell length = 1”

¢ Standard linear shape functions for both the background
grid and boundary grid

¢ Characterized boundary length as a fraction of the cell
length

¢ Characterized boundary location as a fraction of the cell
length

@ Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

Demonstrative Problem

* MPM Setup

® General setup:

0----- % ------ Il-=====--- -0 8- -0 -0--8-]|
T
" Boundary Le ngth ’ Cell Length
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of uniaxial har
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Demonstrative Problem

¢ This particular study examined 55 representative cases
* Boundary location to cell length ratios of:

¢ [0.0 - 1.0] by increments of 0.1
* Boundary length to cell length ratios of:

e 0.125,0.25, 0.5, 0.75 and 1.0

* For example:

Boundary Length h
= = 0.125
Cell Length L
Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

Demonstrative Problem

* This particular study examined 55 representative cases
* Boundary location to cell length ratios of?:

* [0.0 - 1.0] by increments of 0.1
* Boundary length to cell length ratios of:

¢ 0.125,0.25,0.5,0.75 and 1.0

* For example:

Bar
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Demonstrative Problem
For h/L=0.125 Boundary located at the middle of the cell.
VBar
[
a------ %————D————o——o——0—@0——0——.
Normalized Stress Plot
@ Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009
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Demonstrative Problem
For h/L=0.125 Boundary located at the middle of the cell.
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Demonstrative Problem
For h/L=0.125 Boundary located at the middle of the cell.
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Demonstrative Problem
x 10°
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Demonstrative Problem
x 10° . . . . .
6F —— Boundary at 0.5 r
-Boundary at 0.6
Boundary at 0.7
4r Boundary at 0.8
Boundary at 0.9
! Boundary at 0.95
o -~ Analytical Solution
=
w or .
2 |
O Al
o ;
o 4l
B
_gfred .J,ﬂ....w.«.ﬂ_,_.mu;m]._.‘uﬁ..l.l.i :
_gl . . . . .
0 10 20 . 30 ‘10. 50 60
Particle Postition
e Carter Mast - University of\Vashington - 5th MPM W'orkshop 4/2/2009
N
e I
Demonstrative Problem
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Demonstrative Problem

For h/L=0.75 Boundary located at the middle of the cell.

50
45

40 l

4/2/2009
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Reaction Force
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Time, s
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Particle Stress

e Carter Mast -

Demonstrative Problem
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Particle Stress
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Demonstrative Problem
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4 N
Demonstrative Problem
,® It would be nice to view all the plots collectively in a
z | .
i single figure so that general trends could be observed
Y
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Demonstrative Problem
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Demonstrative Problem
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Demonstrative Problem
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Demonstrative Problem
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Demonstrative Problem
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Summary and Conclusions

¢ Itis possible to incorporate the general boundary
condition into the MPM algorithm
¢ Findings in this study:
¢ Shorter boundary lengths typically offer a more accurate
or more desirable solution
* Sensitivity within the algorithm to both:

Boundary location
Boundary length
¢ If the boundary length is close to the cell, the resulting
system of equations is singular or results in an ill-
conditioned matrix eqn.
¢ Issues with particle cell crossings persist and continue to
have an impact on the results

Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009

o

Current Work

* Resolve issues with longer boundary lengths

° Setting nodal acceleration for node behind the boundary
to zero (effectively removes singularity)

¢ Use of orthogonal shape functions between boundary grid
and background grid (effectively removes singularity)
¢ Alleviate particle-cell crossing issues
¢ Cell based averaging strategies
¢ Investigate the effects of using alternative shape
functions for boundary field.
® Preliminary studies show rather encouraging results

¢ Use of orthogonal shape functions between boundary grid
and background grid (effectively removes singularity)

Carter Mast - University of Washington - 5th MPM Workshop 4/2/2009
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Outline

cares to see them or if there is time...

@ Carter Mast - University of Washington - 5th MPM Workshop

e Additional figures and information for anyone who

4/2/2009

Ad-hoc Approaches

* Objectives of the ad-hoc methods:
Look at MPM in 1-D

¢ Use existing formulation

imposing kinematic conditions

* Evaluated only a single particle

e Carter Mast - University of Washington - 5th MPM Workshop

® Develop an initial understanding of the problem

Effect of adding a boundary on the formulation

* Find a “easy” solution to the problem

* Ad-hoc approaches were based primarily on

4/2/2009
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Ad-hoc Approaches

* What do we mean by kinematic condition?
° Vl" ‘n = 0
o IT r'n=0

¢ In pictures (Velocity used as an example):

@ Carter Mast - University of Washington - 5th MPM Workshop
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Ad-hoc Approaches

e Overall did not lead to a desirable solution.

However:
¢ Provided valuable insight into the problem
e Showed different trends

Particle going through the boundary
Particle sticking to boundary

Gaining excessive stress

From the ad-hoc methods:

¢ Idea of a boundary length of boundary zone introduced

* Motivated additional study of the variational formulation

@ Carter Mast - University of Washington - 5th MPM Workshop
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Additional Figures

50

45

40
35

30

~ 25

20
15
10
5

) 1 2 3
time, s

@ Carter Mast - University of Washington - 5th MPM Workshop

4 5 6,
x10

4/2/2009

Additional Figures

Example of an energy plot: h/L = 0.75, boundary at 0.5
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Additional Figures
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Additional Figures
Example of an energy plot: h/L = 1.0, boundary at 0.5
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Additional Figures
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Additional Figures
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Additional Figures

Example of an energy plot: h/L = 0.125, boundary at 0.8
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Additional Figures
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Additional Figures

4000

3500+

3000;

— Kinetic Energy

- - - Potential Energy||
- Total Energy

2500

2000

1500+

Energy, Ib—in

1000

5001

0«

@ Carter Mast - University of Washington - 5th MPM Workshop

4/2/2009

/

Carter Mast - University of Washington -
5th MPM Workshop

4/2/2009

33



Additional Figures
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