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Application: Vehicle-Snow/Mud Interaction

Source: Dr. Sally Shoop, CRREL
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Motivation
Large Uncertainties in Material Properties of

Soft Terrains

• Environmental conditions dictate terrain composition (e.g., snow
metamorphism – a sintering process).

• Process determines microstructure
• Microstructure determines properties

– Mechanical (elasticity, viscoplasticity, damage, fracture…)
– Physical (thermal conductivity, permeability, dielectric 

constant…)
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Example: Large Uncertainties in Snow Properties

Source: CRREL CR90-9
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Example: Large Uncertainties in Tire-Snow 
Interaction Interfacial Forces (Li et al., 2009)
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Scientific Question

How does one address the large uncertainties in the 
mechanical properties of soft terrains?

1. Study the microstructure of materials
2. Study micro-scale properties of materials as a 

function of microstructure
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The ‘Big’ Picture

• Multiscale stochastic studies
– Link micro-, meso- and macroscale properties
– Link multiscale material properties to multiscale terrain 

topologies
– Incorporate results into vehicle design with uncertainties

• Key technical fields
– Stochastic geometry
– Stochastic mechanics
– Reliability
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Why Study Mud (Saturated Soil)?

• Tire companies group snow and mud 
together

• Provides a baseline for 
– Unsaturated soils
– Frozen and thawed soils
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Domain of Saturated Soil
(void ratio = 0.338; depth = 0.012 m)

0.45 m

0.25 m
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Modeling of Saturated Soil as a Fluid-Structure 
Interaction Problem – Uintah Explicit

• Soil grains modeled as circular cylinders packed in a 
regular array

• Radius of each grain varies randomly in [0.75 radius, 
radius] (radius=1 mm)

• Each soil grain is discretized into material points

• Soil grain is modeled as an elastic material

• Gaps between the soil grains are filled with interstitial 
water, also discretized into material points

• Plane strain deformation
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Constitutive Equations for
Nearly Incompressible Water
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Material Properties

 Solid:   
 Density 2,000 [ 3/kg m ] 
 Bulk modulus 39.585 [GPa] 
 Shear modulus 18.27 [GPa] 
 Friction 

coefficient 0.5 

Water:   
 Density 1,000 [ 3/kg m ] 
 μ  0.001 [Pa-sec] 
 γ  7 
 k 2.2 [GPa] 
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Load-Displacement Curves of Saturated and Dry 
Soils under Unconfined Compression – 6.18 m/s

Initiation of instability 

Residual strength 
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High stress will 
lead to fracture of 

soil grains 

PDF of Equivalent Stress Near Peak Stress
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Load-Displacement Curves of Indentation Tests
Indenter Width 3.125 cm

Saturated Dry
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Deterministic Macro-Scale Snow Model

• Drucker-Prager Cap Model (After Shoop, 2001) for Fresh (Low-
Density) Snow
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Abaqus/CAE Tire Model
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Macro-Scale Plate and Static Tire Indentations with 
Frictional Contact (Density = 200 kg/m^3)

Abaqus Explicit and Updated Lagrangian Scheme
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Macro-Scale Pressure-Sinkage Relationship

Plate Indentation
Static Tire Indentation

Source: J.H. Lee, J. Terramechanics (2009)
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Addressing Uncertainty of Snow by Understanding 
Effects of Microstructure

• Collect snow samples from field
• Store snow in a freezer at -25 C
• Conduct 3D X-Ray MicroTomography
• Large-scale numerical simulations of indentation and 

other tests and compare with experimental results
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Skyscan 1172 Microtomography



ARC

Snow Sample Holder

Diameter 1 
cm
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Segmentation Using ImageJ

binarized imagegrey-level

Black is ice
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Example of Snow Microstructure
Side Length = 3.618 mm



Viscoplastic Ice Model with Damage

Ice Bond: 
Maximum 

Tensile 
Strength=2 

MPa

Grain 
Boundary

Source: Kircher, Huang, Lee, August 2008
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Viscoplasticity
SUVIC-I (Aubertin and Lee)

• Strain rate history-dependent Unified Viscoplastic model with 
Internal variables for Crystalline materials – Ice

• Isotropic polycrystalline ice (“snow ice”) at 

• Unified model – plasticity, creep and their interactions are 
modeled in the same way

• Three internal variables: back stress (kinematic hardening), 
yield and drag stress (isotropic hardening)

• Evolution of the state variables: combined action of hardening, 
dynamic recovery 

• Viscoplastic – introduction of a yield surface makes a clear 
distinction between elastic and inelastic behavior.
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Summary of SUVIC-I
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• Decomposition of  elastic 
and inelastic strain rate

• Inelastic strain rate a 
function of  back stress (B), 
yield stress (R), drag 
stress (K) and temperature

• X (reduced stress)
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Summary of SUVIC-I (cont.)
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• Evolution of back stress (B), yield 
stress (R) and drag stress (K)

• Saturation values of state 
variables (i.e., steady-state creep 

state)
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Numerical Integration: 
Theta family Taylor series expansion
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Indentation Configuration

PUNCH

SNOW

SUBSTRATE

A

B

C

D

Periodic B.C. 
AB and CD
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Snow Model (Low-Density)

• Original size 612x612x498 pixels

• Each pixel is 12 um

• VOI used is 400x400x400 pixels 

• Down sampled to 100x100x100 pixels using ImageJ
– Each pixel is 48 um

• Uintah utility pfs2 to convert voxels into material 
points for multiple processors

• Indentation speed is 48 mm/sec.

• Visualization using SCIRun
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Indenter and Initial Snow Geometry
8 Processors – Uintah Explicit
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Final Snow Geometry
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Failed Ice Particles vs. Time
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Load-Displacement Relationship



Pressure-Displacement Relationship
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Animation of Progressive Failure of Particles
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Examples of Future Work

• Snow/Soils penetration tests

• Traction tests of rubber on snow/soils

• Triaxial tests of snow/soils

• Frozen sands

Micro-CT imaging & 
mechanical testing

Micro-CT imaging & 
SnowMicroPenetrometer

testing
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Thank You!

Questions?
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