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1. Introduction
&

Historical Notes —

Motivated by the need for better simulating penetration
problems

Inspired by Sulsky’s seminar on simulating particle
suspension in flow with the PIC method

Initially funded by Sandia National Laboratories ("The
Application of New Numerical Techniques and
Constitutive Equations to the Analysis of Penetration,” Pl
Schreyer with Co-Pls Sulsky and Chen, 1992-1993)

First published in 1994 (Sulsky, D., Chen, Z., and Schreyer,
H.L., "A Particle Method for History-Dependent
Materials," Computer Methods in Applied Mechanics and ;
Engineering, Vol. 118, pp. 179-196, 1994) j_ ﬂ ﬁ e




1. Introduction (continued)
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Remark 1 — The MPM is an extension from the PIC method
In computational fluid dynamics to computational solid
dynamics with the two key differences:

a. The MPM is formulated in the weak form similar to that
for the FEM so that both the FEM and MPM could be
combined together for large-scale simulations.

b. History-dependent constitutive models could be
formulated on the material points, which results in a
robust spatial discretization method for multi-phase and
multi-physics problems, including the transition from
continuous to discontinuous failure modes.

Remark 2 - The original MPM employs a regular
background mesh, and an explicit time integration scheme. ,




] 1. Introduction (continued)

Remark 3 — The major milestones in improving the original
framework of the MPM are as follows:

a. Implicit time integration (Cummins and Brackbill, 2002;
among others)

b. Adaptive background mesh (Tan and Narin, 2002;
among others)

c. The generalized interpolation material point (GIMP)
method (Bardenhagen and Kober, 2004)

d. Multi-scale framework (Ayton et al., 2001; among
others)




2. Statistical Data

&

In about 120 papers published in the last 15 years, the
domestic authors represent the following schools,
national labs and companies:

The US Schools (in alphabetic order)

CalTech, Indiana University-Purdue University in Indianapolis, MIT,
New York University, Northwestern University, Oklahoma State
University, Oregon State University, University of Alaska, University
of Arizona, University of California at Los Angeles, University of
Florida, University of Illinois at Urbana-Champaign, University of
lowa, University of Minnesota, University of Missouri, University of
Nebraska-Lincoln, University of New Mexico, University of
Oklahoma, University of Texas at Austin, University of Texas at San
Antonio, University of Utah, University of Washington,

Washington State University H ﬁ




2. Statistical Data (continued)
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The US National Labs and Companies (in alphabetic order)

Air Force Research Laboratory

Altair Engineering, Inc.

Applied Research Associates

Baker Engineering and Risk Consultants, Inc.
Caterpillar, Inc.

General Motors

Jet Propulsion Laboratory

Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Northwest Research Associates

Sandia National Laboratories
Schlumberger




B 2. Statistical Data (continued)

The foreign authors are from the
following countries (in alphabetic
order):

Argentina, Awustralia, Belarus, Brazil,
Canada, China, France, Germany, India,
Israel, Italy, Japan, Poland, Spain,
Sweden, South Africa, and South Korea.
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2. Statistical Data (continued)

Numbers of the papers in each category
Algorithms and Performance —
*Generalized (Interpolation) MPM: 4 papers
eImplicit Time Integration: 5 papers
eImproved Contact/Interface Schemes: 4 papers
eImproved Mapping Scheme: 1 paper
eImplementation Consideration: 5 papers
*Visualization: 2 papers
Error Analysis: 1 paper
«Combined MPM and FEM: 1 paper
*Multiscale Approaches: 8 papers




B3 2. Statistical Data (continued)

Applications —

|_arge deformation/Failure Evolution/Fracture: 18
papers

*Extreme Loading Conditions (Fire, Explosion, Impact
and Penetration): 22 papers

*Geological/Granular Materials: 18 papers
*Biological /Cellular Materials: 9 papers
*Metal Forming and Processing: 4 papers
Solid-Fluid Interaction: 6 papers

lce Dynamics: 4 papers




3. Our Recent Work

Our Journal Papers Related to the Development of the MPM over the
Last 10 Years:

Zhou, S.J., Stormont, J., and Chen, Z., “Simulation of Geomembrane
Response to Settlement in Landfills by Using the Material Point Method,”
International Journal for Numerical and Analytical Methods in
Geomechanics, Vol. 23, pp. 1977-1994, 1999. — Large Deformation

Chen, Z., Hu, W., Shen, L., Xin, X., and Brannon, R., “An Evaluation of the
MPM for Simulating Dynamic Failure with Damage Diffusion,”
Engineering Fracture Mechanics, Vol. 69, pp. 1873-1890, 2002. — Multi-
Physics Simulation

Hu, W., and Chen, Z., “A Multi-Mesh MPM for Simulating the Meshing
Process of Spur Gears,” Computers & Structures, Vol. 81, pp. 1991-2002,
2003. — Contact Scheme

Chen, Z., Shen, L., Mai, Y.-W., and Shen, Y.-G., “A Bifurcation-based
Decohesion Model for Simulating the Transition from Localization to
Decohesion with the MPM,” Journal of Applied Mathematics and Physics
(ZAMP), Vol. 56, pp. 908-930, 2005. — Failure Evolution Involving g
Continuous and Discontinuous Modes [ ﬂ
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3. Our Recent Work (continued)

Shen, L., and Chen, Z., “A Multi-Scale Simulation of Tungsten Film Delamination from
Silicon Substrate,” International Journal of Solids and Structures, VVol. 42, pp. 5036-5056,
2005. — Multi-Scale Simulation

Shen, L., and Chen, Z., “A Silent Boundary Scheme with the Material Point Method for
Dynamic Analyses,” Computer Modeling in Engineering & Sciences, Vol. 7, pp. 305-320,
2005. — Large-Scale Dynamic Analyses

Hu, W., and Chen, Z., “Model-Based Simulation of the Synergistic Effects of Blast and
Fragmentation on a Concrete Wall Using the MPM,” International Journal of Impact
Engineering, VVol. 32, pp. 2066-2096, 2006. — Coupled CFD and CSD Simulation

Chen, Z., Gan, Y., and Chen, J.K., “A Coupled Thermo-Mechanical Model for Simulating
the Material Failure Evolution Due to Localized Heating,” Computer Modeling in
Engineering and Sciences, Vol. 26, pp. 123-137, 2008. — Coupled Thermo-Mechanical
Simulation

Gan, Y., and Chen, Z.,, “A Study of the Zona Piercing Process in Piezodriven
Intracytoplasmic Sperm Injection,” Journal of Applied Physics, VVol. 104, pp. 044702-1-8,
2008. (This paper has been selected for publication in Virtual Journal of Biological
Physics Research — Physical Studies of Cell Mechanics, Vol. 16, Issue 5, 2008.) — Cell
Penetration Mechanics

Zhang, HW., Wang, K.P., and Chen, Z., “Material Point Method for Dynamic Analysis of
Saturated Porous Media under External Contact/Impact of Solid Bodies,” Computer;
Methods in Applied Mechanics and Engineering, Vol. 198, pp. 1456-1472, 2009. — Mu jf-;-*:i_-ii'f
Phase Interaction [ ﬂ




Gan, Y., and Chen, Z., “A Study of the Zona Piercing Process in
Piezodriven Intracytoplasmic Sperm Injection,” Journal of Applied
Physics, VVol. 104, pp. 044702-1-8, 2008.
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he Effect of Mercury on Lateral Vibration
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Coupled CFD and CSD Simulation

@ Left: Penetration with lateral oscillation
Right: Penetration without lateral oscillation




A Multi-Scale Model-Based Simulation Procedure
@ Based on the MPM and Hyper-surface
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Background Information

* Much research has been performed to study the size (nano-

micro-meso-macro), rate (static-dynamic-impact-shock)
and thermal (isothermal-heat conduction-thermal shock)
effects on material properties, respectively.

Research focus has usually been on the size effect, with a
recent shift to combined size and rate effects due to the
need for multi-scale structural safety under extreme
loading conditions.

The length and time scales that can be probed by the
molecular level simulation are limited due to the
computational capability available. On the other hand, the
current experimental facilities can not provide the data In
the range of sizes and rates that could be handled by I\/ID

simulation.




@ A Simple Model-Based Simulation Approach

o Little work has been done to investigate combined size,
rate and thermal effects on material properties, although
there exists an urgent need for multi-physics simulation
In homeland security and space exploration.

 We propose to formulate a hypersurface to predict
combined size, rate and thermal effects, which could
yield a simple design tool for engineering practice.

« The size effect is also important in evaluating the
Impact of nano-technology on the environment, as
shown In the recent study on bio-nano interactions, as
well as in effective energy generation with energetic
nanoparticles. -




Size Effect on the Material Strength
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A hyper-surface of the material property as a function of
the spatial size and strain rate




Determination of the Hypersurface Based on the
@ Avalilable Experimental and Computational Capabilities

1.  Under quasi-static loading, the continuum level data could be
obtained by using the Weibull statistics, and the molecular
level data could be found with molecular mechanics tools.

2. At the continuum level, gquasi-static, dynamic and impact
experiments could be conducted to determine the rate-
dependent responses.

3. Assuming that there is no sudden change in material
properties, i.e., no local minina or maxima, a monotonic
hypersurface of material properties, as a function of the rate
and size, could be formulated via analytical geometry for
given boundary conditions.

4.  For different materials, the hypersurface exhibits different
changes in curvature, which must be determined by selected

data points on the surface. H ﬁ




Combined Rate, Size and Thermal Effects

&

1. Thermal-activated mechanisms play an important
role in the onset and evolution of material failure.

2. Assuming that no phase transition is considered, a
hypersurface, as a function of rate, size and
temperature, could be formulated to predict the
material strength.

3. For tungsten, the Embedded Atom Method is used
for MD calculation with the temperature being
kept constant in the simulation box via a velocity
scaling technique.

4.  Both molecular and continuum level data are used
to describe the thermal-mechanical response.




The hypersurfaces in a logD (m)-T(K)-log s(GPa) space
under strain rates of =1 s and 107 s, respectively
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298 K and 1798 K, respectively.

The hypersurfaces in a logD (m)-log(s*)-log s (GPa) space

I \ R _l_., . ©
2 OO 7
s 1 NRSRORY / <
N L) f&f f ' _._._ _fJ II_ + =
n_r.u bl _.*If"’ ’1ffljlj =T

o DASACANAY 7 5

E AR
E VORI

&



2 nm, 100 nm and 0.1m, respectively.

The hypersurfaces in a log(s1)-T (K)-log s (GPa) space with

specimen sizes of D
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@ A Material Element with Multiscale Decohesion
INn a Plane Strain Problem
The critical state depends on the hyper-surface
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B9 Failure pattern with mode 11 being dominant
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Failure pattern with mixed modes
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4. Concluding Remarks

The MPM is now 15 years old, and has demonstrated a
great potential In  promoting  Simulation-Based
Engineering Science (SBES).

More and more international players are entering into the
MPM arena so that a regular international workshop and
update of the MPM website might be necessary.

Several research centers/institutes and companies are
developing user-friendly MPM codes, some of which are
free and available online.

For the MPM to become robust in multi-scale simulation
of multi-physical phenomena, much research remains to be
done via an interdisciplinary team effort.

The advancement of SBES needs to take advantage aqf ,
different numerical methods for different problems. H ﬁ e
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