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Fracture Mechanics R Curve
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Fracture Mechanics J Integral

Rice (1968)
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But, it is energy release rate for steady-state propagation only




Fracture Mechanics J Integral
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But, it is energy release rate for steady-state propagation only




Tools for Analysis of Rising R Curve

B How to calculate J:ip?

Jiip = J(x) — Wp(x)

d(x)
Wi (z) = /O o (8) do

B |, = ERR for crack tip propagation
alone

B /r= ERR for simultaneous crack tip
and notch root propagation (steady-
state propagation)

e —

B |7- Jipr = ERR for notch root
propagation alone.



Jiip and J¢r in MPM

B Explicit Crack in MPM - CRAMP

» John A.Nairn, "Material Point Method Calculations with Explicit Cracks," Computer
Modeling in Eng. & Sci., 4, 649-664 (2003).

B | Integral Calculation in MPM

» Yajun Guo and John A. Nairn, "Calculation of J-Integral and Stress Intensity Factors
using the Material Point Method," Computer Modeling in Eng. & Sci., 6,295-308 (2004).

B Imperfect Interfaces in MPM

» John A.Nairn, "Numerical Implementation of Imperfect Interfaces,” Computational
Materials Science, 40, 525-536 (2007).

B Now Combined to Model Fracture Process Zones

» John A. Nairn, "Analytical and Numerical Modeling of R Curves for Cracks with
Bridging Zones," Int. J. Fracture, in press (2008).
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B /(x) (Rice’s integral) is no
longer path independent

B Ji, and J7are path
independent

B Both can be calculated in
MPM with a single
contour at any x.



Fiber Bridging Theory
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Fiber Bridging Theory
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Non Steady State Propagation

B New Model - Depends on Mechanics of the Process Zone
» As load increases, calculate Jij, crack propagates when J[ip > Jiip,c
» Notch root propagates when Ot > Oc

» Before steady state, actual energy release is not given by any | integral. A reasonable

model is:
On 1
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MPM Modeling with Process Zone




Possible Traction “Laws”

B Force-displacement within bridging zone
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Possible Traction “Laws”

B Force-displacement within bridging zone
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Possible Traction “Laws”

B Force-displacement within bridging zone
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Simulated R Curves vs. Fracture Mechanics
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Finite Element Cohesive Elements

B Crack Tip Cohesive Element
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B Originally Called “Fictitious Crack”

B Now exploded into “Cohesive Fracture Modeling”

B Problems!?

» Must know crack path in advance
» Numerical artifacts caused by pre-inserted cohesive elements

» Does a“Cohesive Law’ even exist! (did researches forget the “fictitious” part?)



Two Competing Numerical Methods

B Pure Fracture Mechanics
» No cohesive zone

» Crack advances by crack-tip energy release rate or stress intensity factor

B Pure Cohesive Zone
» No singularity, energy release rate is given by the cohesive law

» Crack advances when “cohesive law” reaches critical COD

B Real Crack Propagation

» Perhaps reality (as so often happens in science, politics, and life) is between these two
extremes and has both crack tip processes and a process zone.

B Implementation in MPM
» As already described, but now systematically...

» Vary the crack tip toughness from 100% of steady state toughness (pure fracture
mechanics) to 0% (MPM cohesive zone model)



Range of Models
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Extension to Unknown Crack Path
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Connection to Experimental R Curves
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B In general there is no way to
determine J or Jiip from
experimental data (not always
recognized in the literature)

B One can, however, directly
measure energy per unit new
crack area.

B Experimental Issues
» Measuring actual crack length
» Measuring energy incremental area

» Unloading may change the results
(i.e., the process zone is not
reversible)



Experimental R Curves Without Unloading
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Energy Released (J/m?)
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B Hashemi, Kinloch, and
Williams

» Used fracture mechanics

with toughness from 1500
to 2500 J/m?.

Tried cohesive model but
needed very high cohesive
stress.

A physical interpretation of
high cohesive stress "is not
immediately obvious"

B MPM Model
» Crack tip toughness of 1600

Jim?2,

p Cohesive stress more

realistic (0.06 MPa)

Entire curve is non-steady
state, thus cannot measure
bridging toughness



Fracture Toughness of MDF

B Medium Density Fiber board
(MDF)

» Wood composite with fine wood \

fibers bound by resin

» 3-5 mm softwood fibers or -2 mm
hardwood fibers

B Measure fracture toughness

» In-plane cracks

® |ongitudinal (TL)
® Transverse (LT) \

» Z cracks (ZL or ZT)
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MDF Fracture Resistance Curves
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Simulation of MDF Fracture Toughness
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Fiber Bridging Properties

Cohesive Stress

Crack [0.75" (MPa)|0.50” (MPa)
38, in plane 0.43 0.79
46, in plane 0.66 2.55
38, Z cracks 0.056 0.038
46, Z cracks 0.10 0.14

In-plane bridging Z bridging

Gp > 500 — 3000 J/m? = Gp > 10— 40 J/m?

0. > 2.6 mm 0., > 0.5 mm



Conclusions

B Fracture with Process Zones can be Modeled well by MPM

» Requires method that can find Ji» and J# from any contour

» R curve modeling requires additional knowledge about the bridging zone mechanics
and method to determine the amount of recoverable energy (here used elastic
unloading)

» MPM can model continuous range of models from pure fracture mechanics to pure
cohesive zone model

» No need to pre-insert cohesive zone elements

B Composite with Fiber Bridging

» Very low cohesive stress leads to noticeable increase in toughness (and is reasonable
to be low because fibers are parallel to the crack)

» Never reaches stready-state propagation

B MDFWood Composites

» High in-plane toughness, very low transverse toughness (100x less)
» Never reaches stready-state propagation
» Can measure reasonable cohesive stress and bound the fiber bridging critical COD



