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‘ Introduction : Teton Dam, ID (1976)
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Introduction: Modeling Requirements

Modeling rain-induced slides and flows requires
consideration of solid and fluid phases throughout the
process

o mixing (wetting),
o combined dynamic action, and

o separation (sedimentation and drying).

Typically, each state is characterized by specialized
differential equations, thus introducing difficulties in
modeling transitions between states.
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I Both phases can undergo
L



The Vision Behind this Research

A unified approach for the modeling of
fluids and solids, their behavior when mixing
or separating, and interaction in partially or fully

I saturated mixtures.
n

m==) Capturing the transition from static
(solid dominant) to dynamic (fluid dominant)
behavior.
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Modeling Framework — Constitutive Model

Unified approach (fluid & solid)

OY(e, &)
Oe

o History dependentpart & = o

with (e, &) = ¢ (deve, &) + U(tre)

o Rate dependent part o=0+2uV’v

- OU(tre)
* O(tre)

April 2-3, 2009 5th MPM Workshop @ Oregon State: Modeling drag force interaction

Pressure




Interaction of Phase Problem

Represent various phases & of mixtures
as independent bodies which can interact if

they “share a space”.

= multiple velocity fields

Identify interacting domains V.~ and define
interaction forces £(*#)

2.
3. Implement volume constraint to prevent “over-
saturation” of representative control volumes
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I 1. Track multiple distinct motions x“(X,?)
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Modeling Multiple Motions

a&

= (Almost) Trivial implementation
o nphases = n parallel analyses
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Governing equations

Variational (weak) form for a single phase
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Discrete form
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Interaction forces

= Body force vs. Drag forces
bo = 0ag + ) DAY

18 1
= ... result of volume averaging
0“Veyp= [ C*dV = [ dV
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Interaction forces

» Drag law (averaged): b7 oc (v —v(@)

= Nodal drag force: £ = / b?) N (x) AV
VanVg

() L] L]

Nodal equilibrium

£0) 1 g0 g
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Interaction forces

= Bang-Bang Method
o Node based

£ % BN (Vi —vi) fnye Ni(x) dV

~ B(ﬁ’a)(vga) - V&B)>/ Ni(x)dV

VRV E

o Automatically satisfies /%% +¢{*% — o
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Interaction forces

= Bang-Bang Method
o Particle based

fgﬁ,a) ~ Z NI(X](OO‘)) B(ﬂ,a)(vg(x]ga)) — v{®)

peEx Y

o Nodal equilibrium requires correction
Afp=—3 (f}“’m - f}ﬁ’“))

£ o £ L Af £ o A
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‘ Interaction forces

= Smooth Volume Fractions (SVF)
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Interaction forces

= Smooth Volume Fractions (SVF)
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Interaction forces

= Smooth Volume Fractions (SVF)

o Node based
G / B (v(®) _ @) Ny (x) dV
Venve

Q
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Interaction forces

= Smooth Volume Fractions (SVF)
o Particle based

(@)

o 1 « a)\ k(68,a « a)y M
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pex p
o Nodal equilibrium requires correction
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Interaction forces

= Variations of SVF
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Test Cases and Error Evaluation

= Reference example
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Test Cases and Error Evaluation
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Test Cases and Error Evaluation
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Test Cases and Error Evaluation

Error assessment
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‘ Test Cases and Error Evaluation
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Test Case

= Flow through a filter stone
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Test Case: Flow through a filter stone

Ceformation ( x1): Displacement of MY, step O,
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Locking Problem

Representing a fluid using MPM shows
unrealistic behavior at large displacements
o Free-surface not leveling

o Uneven penetration of fluid in filter stone

o General limitation on MPM ?
o Material model ?
o Interaction model ?
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I What causes this problem?
.



Locking Problem

Let’'s have a look at an apparently unrelated
problem of MPM for solids:

o Vibrations are induced as particles cross cells

0 Stresses are getting worse as deformations
Increase
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Locking

= Let's 't
proble

o Vibra

o Stres
INCre
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Anti-Locking Strategy

Source of the problem

o Kinematic constraints on the background grid
lock-in false internal stresses

cell crossings causing non-physical vibrations

o Near incompressible behavior exaggerates the
problem
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I o Fictitious internal stresses are partially released at



Anti-Locking Strategy

Proposed solution for locking

o Kinematic constraints on the background grid
relaxed by smoothened volume change 6

Y ZpEcell tT€p mp/gp

OU (tre) oU (0)

— 0 otre | Pp T Peell =0 90

= Fictitious internal stresses are relaxed at cell level

—tre)opdV =0 = | 0 =
I /V ZpEcell mp/gp
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Anti-Locking Strategy

= Anti-Locking and Interaction Model
o Filter stone problem
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Anti-Locking Strategy
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Summary and Conclusions

Both bang-bang methods show a linear rate of convergence with
grid refinement.

SVF (with the exception of the SVF-capped variant) converges at
least at a quadratic rate.

SVF models are desirable over the bang-bang interaction model
because they produce relatively accurate results for both a
novice user, who may seek results using an unrefined grid, as
well as a more experienced user who seeks to capture the crisp
behavior using a small number of cells per phase.

MPM is suitable for unified representation of solids and fluids but
it requires special measures against locking (reduction of
fictitious internal stresses).

Mackenzie-Helnwein, Arduino, Shin, Moore, Miller: Modeling Strategies
for Multiphase Drag Interactions Using the Material Point Method,
submitted for publication in IINME
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