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Fracture Process Zone

Fibrous Composites
Wood
Concrete

Crack Tip

Notch Root

COD

Note: there are two “crack tips”



Fracture Mechanics R Curve
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Rice (1968)

Fracture Mechanics J Integral

J =
∫

Γ

(
W dy − !T · d!u

dx
dx

)

But, it is not energy release rate when
 there are process zones

J = Jtip +
∫ δc

0
σ(δ) dδ

But, it is energy release rate for steady-state propagation only

δc

Bao and Suo (1992)
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Tools for Analysis of Rising R Curve

How to calculate Jtip?

Jtip = ERR for crack tip propagation 
alone

Jff = ERR for simultaneous crack tip 
and notch root propagation (steady-
state propagation)

Jff - Jtip = ERR for notch root 
propagation alone.

x

WB(x) =
∫ δ(x)

0
σ(δ) dδδ(x)

Jtip = J(x)−WB(x)



Jtip and Jff in MPM

Explicit Crack in MPM - CRAMP
‣ John A. Nairn, "Material Point Method Calculations with Explicit Cracks," Computer 

Modeling in Eng. & Sci., 4, 649-664 (2003).

J Integral Calculation in MPM
‣ Yajun Guo and John A. Nairn, "Calculation of J-Integral and Stress Intensity Factors 

using the Material Point Method," Computer Modeling in Eng. & Sci., 6, 295-308 (2004).

Imperfect Interfaces in MPM
‣ John A. Nairn, "Numerical Implementation of Imperfect Interfaces," Computational 

Materials Science, 40, 525-536 (2007).

Now Combined to Model Fracture Process Zones
‣ John A. Nairn, "Analytical and Numerical Modeling of R Curves for Cracks with 

Bridging Zones," Int. J. Fracture, in press (2008).
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J(x) (Rice’s integral) is no 
longer path independent

Jtip and Jff are path 
independent

Both can be calculated in 
MPM with a single 
contour at any x.
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Fiber Bridging Theory



Fiber Bridging Theory

R = Gtip,c +
∫ δc

0
σ(δ) dδ
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New Model - Depends on Mechanics of the Process Zone
‣ As load increases, calculate Jtip, crack propagates when Jtip  > Jtip,c

‣ Notch root propagates when δroot > δc

‣ Before steady state, actual energy release is not given by any J integral. A reasonable 
model is:

Non Steady State Propagation
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MPM Modeling with Process Zone



!

"

G
c

!a

Linear Elastic

Possible Traction “Laws”

Force-displacement within bridging zone
‣ Linear Elastic

‣ Elastic/Softening

‣ Linear Softening



Possible Traction “Laws”

Force-displacement within bridging zone
‣ Linear Elastic
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Possible Traction “Laws”

Force-displacement within bridging zone
‣ Linear Elastic

‣ Elastic/Softening

‣ Linear Softening
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Simulated R Curves vs. Fracture Mechanics
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Crack Tip Cohesive Element

Originally Called “Fictitious Crack”

Now exploded into “Cohesive Fracture Modeling”

Problems?
‣ Must know crack path in advance 

‣ Numerical artifacts caused by pre-inserted cohesive elements

‣ Does a “Cohesive Law” even exist? (did researches forget the “fictitious” part?)

Finite Element Cohesive Elements
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Two Competing Numerical Methods

Pure Fracture Mechanics
‣ No cohesive zone

‣ Crack advances by crack-tip energy release rate or stress intensity factor

Pure Cohesive Zone
‣ No singularity, energy release rate is given by the cohesive law

‣ Crack advances when “cohesive law” reaches critical COD

Real Crack Propagation
‣ Perhaps reality (as so often happens in science, politics, and life) is between these two 

extremes and has both crack tip processes and a process zone.

Implementation in MPM
‣ As already described, but now systematically...

‣ Vary the crack tip toughness from 100% of steady state toughness (pure fracture 
mechanics) to 0% (MPM cohesive zone model)



Range of Models
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Extension to Unknown Crack Path
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In general there is no way to 
determine Jff or Jtip from 
experimental data (not always 
recognized in the literature)

One can, however, directly 
measure energy per unit new 
crack area.

Experimental Issues
‣ Measuring actual crack length

‣ Measuring energy incremental area

‣ Unloading may change the results 
(i.e., the process zone is not 
reversible)

Gc =
Pi(uj − u0)− Pj(ui − u0)

2B∆aij
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Experimental R Curves Without Unloading
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Hashemi, Kinloch, and 
Williams
‣ Used fracture mechanics 

with toughness from 1500 
to 2500 J/m2.

‣ Tried cohesive model but 
needed very high cohesive 
stress.

‣ A physical interpretation of 
high cohesive stress "is not 
immediately obvious"

MPM Model
‣ Crack tip toughness of 1600 

J/m2.

‣ Cohesive stress more 
realistic (0.06 MPa)

‣ Entire curve is non-steady 
state, thus cannot measure 
bridging toughness
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Fracture Toughness of MDF

Medium Density Fiber board 
(MDF)
‣ Wood composite with fine wood 

fibers bound by resin

‣ 3-5 mm softwood fibers or 1-2 mm 
hardwood fibers

Measure fracture toughness
‣ In-plane cracks

• Longitudinal (TL)

• Transverse (LT)

‣ Z cracks (ZL or ZT)

z

L
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Simulation of MDF Fracture Toughness
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Fiber Bridging Properties
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B

Crack 0.75” (MPa) 0.50” (MPa)
38, in plane 0.43 0.79

46, in plane 0.66 2.55

38, Z cracks 0.056 0.038

46, Z cracks 0.10 0.14

Cohesive Stress

GB =
1
2
σcδc

GB ≥ 10− 40 J/m2

δc ≥ 2.6 mm δc ≥ 0.5 mm

In-plane bridging Z bridging

GB ≥ 500− 3000 J/m2



Conclusions

Fracture with Process Zones can be Modeled well by MPM
‣ Requires method that can find Jtip and Jff from any contour
‣ R curve modeling requires additional knowledge about the bridging zone mechanics 

and method to determine the amount of recoverable energy (here used elastic 
unloading)

‣ MPM can model continuous range of models from pure fracture mechanics to pure 
cohesive zone model

‣ No need to pre-insert cohesive zone elements

Composite with Fiber Bridging
‣ Very low cohesive stress leads to noticeable increase in toughness (and is reasonable 

to be low because fibers are parallel to the crack)
‣ Never reaches stready-state propagation

MDF Wood Composites
‣ High in-plane toughness, very low transverse toughness (100x less)
‣ Never reaches stready-state propagation
‣ Can measure reasonable cohesive stress and bound the fiber bridging critical COD


